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Abstract 

Abnormal regulation of signaling pathways is the key 

factor causing disease. For better understanding disease 

mechanisms, many methods have been proposed to 

identify the significantly differential pathways between 

diseases and normal individuals via microarray gene 

expression datasets. Unlike previous common analysis 

processes, which is focused on merging gene difference 

into difference of pathway indirectly. In this paper, the 

idea of information divergence is introduced and a novel 

signaling pathway analysis method from a holistic view is 

presented to improve the detection results. We identify 

significantly differential pathways directly via computing 

the KL divergence between real and simulated probability 

distributions of gene-gene regulatory ability. We test our 

method on four human microarray expression datasets. 

The results illustrate that the capability of our approach in 

detecting significantly differential pathways between two 

sample groups is superior to other three classical pathway 

analysis methods. 

1 Introduction 

Signaling pathway is a major biological function of 

organism, and checking the activity of signaling pathway 

will reflect the current physiological state of cell. 

However, a large number of biological experiments need 

to be implemented to determine the activity of signaling 

pathway via wet experiment method. With the popularity 

of microarray chip technology, a growing number of 

researchers are concentrated on studying signaling 

pathway using bioinformatics. In order to predict possible 

disease marker and help to understand disease 

mechanisms, the microarray gene expression data was 

used to identify significantly differential pathway between 

normal and cancer samples. 

The objective of pathway analysis is to find 

significantly differential pathways between two given 

conditions [1]. In the past few decades, pathway analysis 

has experienced three generations. The first two 

generation methods referred to as gene set difference 

analysis [2]. These methods are based on considering 

pathways as simple gene lists. The first generation 

approaches are known as Over-Representation Analysis 

(ORA), such as GOToolBox [3], GOEAST [4]. The 

differential pathway is inferred via estimating the chance 

of observing a given number of genes from a particular 

pathway among the selected differentially expressed genes. 

The second generation methods are called Functional 

Class Scoring (FCS). Subramanian et al. proposed the 

earliest FCS method named GSEA [5]. It selects a statistic 

to compare groups of samples, and then rank the entire list 

of genes according to the value of the statistic, finally 

predict significantly differential pathways by permutation 

test. As a result, most methods were improved on GSEA, 

such as ssGSEA [6], GANPA [7].  

Although ORA and FCS are capable of providing list of 

pathway with differentially expressed genes, they are 

some issues still need to overcome. Firstly, ORA discard 

gene expression information, and only consider number of 

differential expressed genes. Moreover, Both ORA and 

FCS identify pathway via differentially expressed (DE) 

genes, which consider pathways as simple gene lists, 

ignoring changes of relationship among genes [2]. To 

solve those problems, the third generation approaches 

considered the integration of gene expression and pathway 

topology. Some of these approaches identify pathway 

based on differentially co-expressed (DC) genes, such as 

GSCA [8], GSNCA [9], EDDY [10]. Recently, Ma et al. 

proposed DRAGEN [11] method, it detects pathway by 

differentially regulated (DR) genes quantitatively. These 

third generation methods considered the relationships 

between genes, and have been widely used. Even though, 

there still have two issues need to overcome. First of all, 

the expression of genes is a complicated process regulated 

by several factors. Gene expression data will reflect 

relationship between genes at a certain extent, but they 

will not quantify the association between genes accurately 

completely. One study reveals that sometimes the 

relationship between genes computed from gene 

expression data and the actual biological regulation of 

genes are inconsistent [12]. Hence most existing 

approaches, which quantify degree of interaction among 

genes using gene expression alone, may bring interference 

information. Secondly, it is general for current methods to 

merge difference of DE, DC or DR genes independently 

by simple sum, mean and K-S methods. The above whole 

workflow pays more attention to the difference of 

pathway components than systemic difference of pathway. 

So, these methods may overlook the overall change of 

pathway. 

With the above consideration, we propose a new 

approach. It is based on one biological hypothesis that 

biological systems can show highly diverse activity 
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patterns across specific molecular contexts [13]. Our 

method reflects pathway activity patterns by the 

probability distribution of gene-gene regulatory capacity. 

A linear regression model was adopted to simulate the 

gene-gene regulatory ability using gene expression data. 

And also an improved directed random walk algorithm on 

the prior pathway topology was applied to quantify the 

actual gene-gene regulatory capacity. Then, the concept of 

information divergence [14] in information theory was 

introduced to quantify the difference between real and 

simulated probability distributions of regulatory capacity. 

Finally, we got pathway distance between two phenotypes 

according to difference of two KL divergences, and detect 

final significantly differential pathways by permutation 

test. During the test, four human microarray expression 

datasets were implemented and the experiment results 

indicated that out method achieves better results than 

previous methods.  

The paper is organized as follows: Section 2 describes 

the detail of our approach. Section 3 indicates the 

experimental results on different microarray gene 

expression datasets. At last, Section 4 presents our 

conclusion.  

2 Methods 

The following five steps are the main process of our 

method. 

2.1 Data pre-processing 

All data manipulations were performed using R 3.1.1. We 

downloaded Affymetrix CEL files from NCBI GEO [15] 

and preprocessed all the microarray datasets using RMA 

method from Bioconductor package. The work described 

here used human pathways from KEGG [16]. We adopted 

parseKGML function from KEGGgraph package and 

remained pathways which contain at least one of the 

following regulations: inhibition ubiquination, activation, 

expression, inhibition, activation phosphorylation, 

inhibition phosphorylation, dephosphorylation inhibition, 

activation dephosphorylation, inhibition ubiquitination, 

repression. Finally, we got 166 non-metabolic KEGG 

pathways. 

2.2 Quantization of real gene-gene regulatory 

ability by DRW 

In this study a target signaling pathway is represented as a 

directed graph, where the nodes represent genes and 

directed edges represent regulation between genes. g.start 

and g.end represent transcription factor and target gene 

respectively. I = (g.start,g.end) is a matrix of regulatory 

type, and its elements are set according to regulatory type 

of gene pair. I(g.start,g.end) = 1 if g.start activates or 

expresses g.end, I(g.start,g.end) = 1 if g.start inhibits or 

represses g.end. I(g.start,g.end) = 0 if g.start and g.end 

have no relationship. 

Random walk is a classical method for measuring 

correlation between nodes. It has been applied to pathway 

analysis [17] and disease classification [18] studies 

successfully. We suppose that association between g.start 

and g.end is closer, thus g.start has stronger regulatory 

ability on g.end. Based on this assumption, we introduce 

directed random walk (DRW) with restart probability 

method to quantify the real biological regulatory ability of 

gene pairs, and set restart probability p=0.7 initially. We 

improve traditional DRW method considering the 

characteristic of biological pathway data. The random 

walk on the pathway graph and the PageRank algorithm 

used by the Google search engine are similar. However, 

considering the importance of transcription factor, the 

direction of the random walk is set to be opposite. 

Moreover, in order to distinguish the direct and indirect 

regulation. We add one step, multiplying original u by 

exp(-num) during the iteration loop, where num represents 

iteration time. As the increasing of num, the distance 

between transcription factor and target gene is farther, and 

the ability of transcription factor regulate target gene is 

decaying. Thus, these improvement plans can ensure that 

if genes are close, then the ability of regulation is strong 

and vice versa. The specific algorithm of DRW with 

restart probability is illustrated in Table 1. 

 

Table 1. Algorithm of DRW with restart probability 

Directed Random Walk with restart probability 

Input ： matrix D for target gene expression data 

D=(gene,sample), matrix G for one pathway  

G=(g.start,g.end),with regulation type I=(g.start,g.end), 

restart probability p. 

Output：matrix R.real for gene-gene regulatory degree in 

pathway   

1. Map pathway G onto rownames of D,and reverse 

direction of edge regulation in the pathway G, get 

G’:=(g.end,g.start); 

2. for i <- 1 to length |g.end|  do { 

3. v := vector of length |g.end| set v[i] to 1,otherwise 0; 

4. u := v; u.old := v; num :=0; 

5. while( TRUE )  do { 

6. u :=  (exp(-num))*(1-p)*G’*u.old+p*v 

7. if ( sum(|u-u.old|) ) < 1E-10) 

8. break; 

9. u.old := u; 

10. num++; 

11. } 

12. R_real [,i] := u*I(g_start,g_end); 

13. } 

14. return R.real; 

2.3 Simulation of gene-gene regulatory ability by 

gene expression data 

Due to gene expression data can reflect ability of genes’ 

regulation at a certain extent, and detect changes in 

regulatory relationships can discover pathways in 

response to perturbed phenotypes. Using the idea of 

DRAGEN for reference, target gene is regulated by 

transcription factor, and the linear regression model 

demonstrates reasonably good power in detecting 

differentially regulated patterns [11].Therefore, we build 

linear regression model for normal and disease sample to 

explain the expression levels of the target gene by those of 

the transcription factors as Eq. (1), where the subscript i 
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indexes the normal (i=0) or the disease (i=1) phenotype. 

For phenotype i, Xi and Yi represent the expression level of 

transcription factor and target gene, respectively,i and i  

are the regression intercept and slope, i is a zero mean 

Gaussian noise. In fact, the regression coefficients i 

denote the capacity of regulation between existing gene 

pairs in pathway. Eventually, for a candidate pathway, we 

will obtain regulatory capacities of gene pairs 

R.simu_normal and R.simu_disease for two different 

phenotypes.   

 iiiii XY  
                     (1) 

2.4 Computation of KL divergence 

For a specific pathway, P denotes real probability 

distributions, which is gained by DRW. Q_normal and 

Q_disease represent simulated probability distributions 

for normal and disease sample respectively, and they are 

computed by liner regression model using gene expression 

data. The KL divergence between two different 

distributions can be calculated as Eq. (2) and Eq. (3), 

where P(i), Q_normal and Q_disease can obtain by 

traditional normalization method as Eq. (4), Eq. (5) and 

Eq. (6), where edge  represents existing gene pairs in one 

candidate pathway. 
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2.5 Evaluation of statistical significance 

With KL divergence for regulatory capacity probability 

distributions obtained, we calculate the difference between 

KL_normal and KL_disease by absolute difference as Eq. 

(7), and evaluate the statistical significance using 

permutation test. In order to retain the gene-gene 

correlations, we repeat the random shuffling of phenotype 

labels, and compute KL_diff using the permutation data. 

At last, we obtain p.value as Eq. (8), where I(

) is an 

indicator function, and n represents permutation time.  

 

 |__|_ diseaseKLnormalKLdiffKL   (7) 
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In the following section, we tested our method on four 

human microarray data, and the results performed by our 

method are more effective than other three existing 

approaches. 

3 Results 

We used four publicly available datasets from GEO 

database, and the accession numbers are GSE9348, 

GSE32323, GSE18105 and GSE21510. All these four 

datasets were collected to compare gene expression in 

human colorectal cancer and control samples. 

In order to illustrate the rationality of the idea behind 

our method, we compare KL_normal and KL_disease of 

differential pathways we detected. Our approach identified 

25 significantly differential pathways on GSE32323. The 

specific comparison between KL_normal and KL_disease 

is shown in Figures 1, the horizontal axis shows the serial 

number of detected differential pathways, and the vertical 

axis means the value of KL divergence. For most detected 

significantl differential pathways, such as "cAMP 

signaling pathway","Wnt signaling pathway" and "cGMP-

PKG signaling pathway", KL_normal is smaller than 

KL_disease, and the detailed KL-divergences of these 

three pathways are present in Table 2. Few disease 

significant pathways, such as "Pathways_in_cancer" and 

"Prostate_cancer", KL_normal is bigger than KL_disease. 

We can conclude that as to normal pathways, distributions 

simulated by normal gene expression fit to real 

distributions better. In the same way, for some disease 

pathways, distributions simulated by disease gene 

expression fit to real distributions well. Thus, this result is 

in accordance with our above biological hypothesis, which 

pathway regulatory capacity will be disturbed when 

organism gets to be abnormal state.  

Comparing our method with GSEA, GSCA and 

DRAGEN, we performed these methods with the same 

parameters. Via searching the biological supporting 

documents by Google Scholar, we can get the precision of 

every detected result. For all presented methods, pathways 

with p.value below 0.05 are considered significantly 

differential, namely to compute the ratio of true 

significantly differential (with literature supporting) 

pathways in all the detected difference pathways. The 

detailed comparison results are shown in Table 3. For 

three of these expression data (GSE32323, GSE18105 and 

GSE9348), the results here indicate that our method 

performs higher precision than other three approaches. 

GSEA identifies significantly differential pathways by 

differentially expressed (DE) genes, and it is generally 

accepted. In terms of precision on GSE21510, GSEA gets 

better detection results than our method. For assessing the 

extent of differentially co-expressed (DC) for a given 

pathway, GSCA compares correlations about all possible 

gene pairs for two different conditions. Thus, overlooking 

the true interaction of gene pairs, meanwhile expanding 

the difference between two phenotypes, and will identify 

many non-significantly differential pathways. Therefore, 

the precision of results by GSCA is lower. As to 

DRAGEN, it maps gene ID to human gene regulatory 

network to get interaction between genes. However, 

human regulatory network is extremely huge and complex. 

Because the network is incomplete, many genes ID can’t 

be found the corresponding ones, then some genes with 

notable difference information will be lost. Consequently, 

DRAGEN detects few significantly differential pathways. 
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More seriously, DRAGEN can’t identify any pathway, 

such as the result of performing on GSE9348. 

In order to illuminate the effectiveness of our method in 

detecting differentially regulated pathways, by varying the 

cut-off value of p.value, we obtained a series of 

sensitivities and specificities on the four datasets 

respectively, and we were able to plot receiver operating 

characteristic (ROC) curves and calculate AUC scores as 

the area under this curve. Figures 2-5 illustrate the ROC 

curves of four different methods from four expression 

datasets (GSE32323, GSE18105, GSE21510, GSE9348), 

and Table 4 lists the area under curve values of the 

corresponding ROC curves in Figures 2-5. The horizontal 

axis of ROC curves shows the value of specificity, and the 

vertical axis means the value of sensitivity. The results of 

ROC curves on all four gene expression datasets show that 

the curves of our method climb more closely towards the 

top-left corner, suggesting the higher integrated 

performance in detecting significantly difference 

pathways of our method. From Table 4, we can see that 

AUCs of all these methods are not very high. Among 166 

candidate pathways, there are almost 70 pathways have 

been identified relevant to colorectal cancer through 

literature mining. However, our method, GSEA and 

DRAGEN only detected a small part of differential 

pathways, and that may lead to low sensitivity. On the 

contrary, GSCA considered many pathways as statistically 

significant, almost above 80% of the candidate pathways, 

and this may lead to low specificity. Thus, the AUC, 

which is a trade-off between sensitivity and specificity, 

computed by all these four methods are not good enough. 

But it is worth mentioning, the AUC scores on all four 

gene expression datasets of our method are the highest, 

GSEA comes second, and the scores of GSCA and 

DRAGEN are not very well (most AUC scores are below 

0.5), these results further support the effectiveness of our 

method. 

Through the above experimental comparisons, our 

method demonstrates superior performance than the other 

three methods. This is partly due to the fact that detecting 

the probability distributions about regulatory capacity of 

gene pairs can provide more comprehensive view of 

underlying process. 

 

Table 2. KL-divergences of pathways in different states 

Pathway Name Edge 

Size 

KLD of 

Real vs 

Normal 

KLD of 

Real vs 

Disease 
cAMP signaling pathway 460 0.5773 0.9048 

cGMP-PKG signaling 

pathway 

278 0.6323 0.9348 

Wnt signaing pathway 293 0.7085 1.3475 

 

 
Figure 1. KL-divergences of pathways in different states 

Table 3. The Precision of different methods 

Data GSEA GSCA DRAG-

EN 

Our 

Method 
GSE32323 52.63% 47.77% 38.24% 60.00% 

GSE18105 47.06% 47.77% 40.00% 61.54% 

GSE21510 53.85% 47.80% 51.35% 51.72% 

GSE9348 36.36% 47.62% 00.00% 73.33% 

 

 

Figure 2. The comparison of ROC on GSE32323 
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Figure 3. The comparison of ROC on GSE18105 

 

Figure 4. The comparison of ROC on GSE21510 

Table 4. The area under curve values of different methods 

Data GSEA GSCA DRAG-

EN 

Our 

Method 
GSE32323 0.5302 0.4229 0.4977 0.5668 

GSE18105 0.5254 0.4504 0.5012 0.5722 

GSE21510 0.5209 0.4100 0.4573 0.6100 

GSE9348 0.5061 0.4818 0.5000 0.6194 

 

 

Figure 5. The comparison of ROC on GSE9348 

4 Conclusion  

In this paper, a new approach was proposed to identify 

significantly differential pathway especially between 

normal versus disease phenotypes. Different with other 

methods, we suppose the probability distribution of 

regulatory capacity will be changed when pathway is 

disturbed. Our method detects pathways based on 

differently regulatory (DR) genes, and it measures 

different regulations of pathway in a systematical way. 

Instead of calculating relationship of gene-gene using 

gene expression data alone, it integrates expression data 

and pathway topology information. It identifies final 

significantly differential pathway by comparing the 

distance between two fitted degrees, which is computed 

from different phenotype gene expression data and 

pathway topology structure. In the end, we implement 

experiments on four real microarray datasets to prove our 

method works. In comparison with other three previous 

methods, our method with higher precision is competitive 

to predict the true significantly disturbed pathway between 

normal and disease phenotypes. In addition, it is beneficial 

for researches on biology or medical science. In summary, 

the study here analysis difference of pathway from an 

overall perspective will provide a complementary analysis 

framework of pathway analysis. 
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