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Abstract

A two-stage supply chain scheduling problem is con-
sidered, where the first stage is job production and the
second stage is job delivery. The focus is on the s-
tudy of the integration of production scheduling with
delivery of finished products to customers. In our con-
sidered model each job can be processed on either of
two identical machines, and then delivered by a vehicle
to a customer location. We present an improved al-
gorithm with the worst-case performance ratio 14

9 + ε,
which improves the known upper bounds of 2 and 5

3 in
[Chang, Y.C. and Lee, C.Y., E. J. O. R., 158 (2004),
pp. 470-487; Zhong, W., Dosa, G. and Tan, Z.Y., E.
J. O. R., 182(2007), pp. 1057-1072].

1 Introduction

The problem we considered was firstly proposed by
Chang and Lee [1], and can be described as follows:
there are n job N = {J1, J2, · · · , Jn} which must be
processed on two identical parallel machines and then
are delivered to a customer. Job Jj has a process-
ing time pj and a size sj . There is only one vehicle
and its capacity is z. All jobs delivered together in
one vehicle are defined as a delivery batch. We de-
fine the value of a schedule σ, denoted by Cmax, as
the time when the vehicle finishes delivering the last
batch to the respective customer and returns to the ma-
chine. Our aim is to find a schedule to minimize the
Cmax. Using the notation of Graham [2], we denote
our problem as P2 → D,K = 1|v = 1, c = z|Cmax.
Where “P2 → D, K = 1” is used to represent that
jobs are processed on either one of two identical par-
allel machines and then delivered to one customer,
“v = 1, c = z” represent that one vehicle that can
carry processed jobs with total sizes no more than z,
and “Cmax” is an objective function.

Chang and Lee [1] give a polynomial time algorithm
with a worst-case ratio of 2 for the problem. Zhong
et.al.[5] improve the upbound to 5/3. In this paper, we
furthermore propose an improved algorithm with the
worst-case performance ratio 14

9 + ε for every ε > 0.

For the knapsack problem, Lawler [3] propose an
FPTAS with a time complexity of O(n log( 1

ε ) + 1
ε4 ),

where 1 − ε is the worst case ratio. Kellerer[4] al-
so propose an FPTAS with a time complexity of
O(n min{log n, log 1

ε} + 1
ε2 min{n, 1

ε log 1
ε}).

2 An improved algorithm

In the following, we first present the description of
Algorithm H2, Procedure A and Procedure B. Af-
terwards, we present our improved algorithm MH2′,
which calls them when necessary. The following Algo-
rithm H2 was proposed by Chang and Lee [1].

Algorithm H2 :

Step 1. Assign jobs to batches by algorithm FFD (the
jobs are ordered by nonincreasing size, and then in this
order the next job is always packed into the first bin
where it fits). Let the total number of resulting batches
be bH2.

Step 2. Calculate the sum of the processing times of
the jobs in Bk and denote it Pk, for k = 1, 2, · · · , bH2.
Reindex these batches so that P1 ≤ P2 ≤ · · · ≤ PbH2 .

Step 3. Starting with B1, assign batches one by one
to he machine (For the convenience of the analysis, we
assign batch B1 to machine M1.) that has a smaller
load before the batch is assigned (all jobs in the same
batch are assigned to the same machine). Within each
batch, jobs are sequenced in an arbitrary order.

Step 4. Dispatch each finished but undelivered batch
whenever the vehicle becomes available. If multiple
batches have been completed when the vehicle becomes
available, dispatch the batch with the smallest index.

Let the schedule, makespan and objective function
value obtained by algorithm H2 be σH2, C(H2) and
CH2, respectively. Furthermore, let C1 and C2 denote
the completion times of the jobs sequenced last on ma-
chine M1 and machine M2, respectively, in algorithm
H2. Then C(H2) = max{C1, C2}.

Remark 2.1 [1]

(1) If C(H2) is determined by the first machine (denot-
ed by M1), then bH2 is odd; If C(H2) is determined by
the first machine (denoted by M2), then bH2 is even.

(2) For schedule σH2, if there exists a batch Bk, k ≥ 3,
delivered immediately after being processed on M1, then
Pk ≥ 2T ; If there exists a batch Bq, q ≥ 4, delivered
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immediately after being processed on M2, then Pq ≥
2T . (T is the transportation time including the vehicle
delivers the batch to the customer and returns to the
machine for each delivery.)

Remark 2.2 [1]

CH2 = max{C(H2) + T, P1 + bH2T, P − C(H2) +
2T, P2 + (bH2 − 1)T}.

Remark 2.3 [5]

If CH2 = P1+bH2T (bH2 ̸= 1) or CH2 = P2+(bH2−
1)T (bH2 ̸= 1), then

(1)P1+bH2T
C∗ < 2

bH2 +
bH2− 2

bH2

b∗ ;

(2)P2+(bH2−1)T
C∗ < 2

bH2−1
+

bH2−1− 2

bH2−1

b∗ .

It is shown by Chang and Lee[1] that the worst-case
ratio of H2 is 2. Considering that there are two points
which prevent the worst-case ratio of H2 from being
better. The first one is that H2 assigns jobs to batches
by FFD, which does not take into consideration the
processing times of jobs. The total processing time of
jobs in the first batch may be much larger than that
in the optimal solution. Therefore, Zhong et. al.[5] use
a procedure A, which applies an FPTAS of the knap-
sack problem, enabling the vehicle to start delivering
jobs earlier. The second is that H2 assigns jobs in one
batch to a machine as a whole, regardless if the another
machine may be idle at the same time. They use a pro-
cedure B, which separates the last batch into two part-
s. By calling the two subroutine procedures, Zhong et.
al.[5] proposed their improved algorithm MH2 with
worst-case ratio of 5

3 . We present the following two
subroutine procedures of Procedure A and Procedure
B, which we will used in our algorithm in our paper.

Procedure A :

Step 1. Construct an instance of the knapsack prob-
lem as follow, for each job Jj , j = 1, 2. · · · n, we suppose
its profit is pj , size is sj , and the knapsack capacity is
z. Run any FPTAS for the knapsack problem with
ε > 0, and denote by N1 the set of items (jobs) put
into the knapsack. We also denote N1 as a batch in
the following paper when no ambiguity.

Step 2. Assign jobs (N\N1) to batches by algorithm
FFD. Let the total number of resulting batches be
bA (without loss of generality, we put N1 in the last
batch).

Step 3. Define PA
k as the total processing time of the

jobs in the kth batch ( k = 1, . . . , bA ). Reindex these
batches so that PA

1 ≤ PA
2 ≤ · · · ≤ PA

bA , and denote
the kth batch as BA

k .

Step 4. Starting with BA
1 , assign batches one by one

to the machine(for the convenience of the analysis, we
assign batch B1 to machine M1) that has a smaller load
before the batch is assigned (all jobs in the same batch
are assigned to the same machine).Within each batch,
jobs are sequenced in an arbitrary order.

Step 5. Dispatch each completed but undelivered bat-
ch whenever the vehicle becomes available. If multiple
batches have been completed when the vehicle becomes
available, dispatch the batch with the smallest index.

Let the schedule, makespan and objective function
value obtained by Procedure A be σA , C(A ) and CA ,
respectively.

Procedure B :

Let {Ji1 , Ji2 , · · · , Jim} be jobs in BbH2 such that
pi1 ≤ pi2

≤ · · · ≤ pim
, where BbH2 is the last batch

of σH2 obtained from Heuristic H2. If C(H2) ≤ 3
4P

or pim ≥ 2
3P , then the new schedule σB is identical to

σH2. Otherwise, σB is re-constructed as follows.

Step 1. If 0 < pim ≤ P
2 , then construct a sub-batch

of BbH2 as Bs = {Jil
, Jil+1

, · · · , Jim}, where l is the

largest integer such that P
4 ≤

m∑
j=l

pij ≤ P
2 . Process and

deliver batches prior to BbH2 in σH2 as follows step 3 of
Algorithm H2. Assign jobs in BbH2\Bs to the machine
on which BbH2 originally was assigned, and jobs in Bs

to the other machine. Deliver jobs in BbH2\Bs and Bs

together as the last batch. Otherwise, go to step 2.

Step 2. If P
2 < pim < 2

3P , let Bs = {Jim}. Assign jobs
in B1∪B2∪· · ·∪BbH2\Bs to the machine on which BbH2

originally was assigned (one machine starting with B1,
then B2, B3, . . . BbH2−1, BbH2\Bs) and jobs in Bs to
the other machine. Deliver jobs in BbH2\Bs and Bs

together as the last batch.

Let the schedule, makespan and objective function
value obtained by Procedure B be σB, C(B) and CB,
respectively. Also let P1 and P2 be the total processing
time of jobs in the first and second batches, respective-
ly. Based on the Algorithm H2, Procedure A and
Procedure B, we present our major algorithm MH2′

as follows.
Algorithm MH2′

Step 1. Run algorithm H2.

Step 2. If CH2 ̸= P1 + 3T , CH2 ̸= P1 + 4T, and
CH2 ̸= C(H2) + T , output CH2, stop.

Step 3. If CH2 = C(H2) + T , run Procedure B,
output min {CB, CH2}, stop.

Step 4. If CH2 = P1 + 3T , run Procedure A , output
min{CH2, CA }, stop.

Step 5. If CH2 = P1 + 4T and P1 ≤ 1
2T or T ≤ P

5 ,
output CH2, stop. Otherwise, run Procedure A ,
output min{CH2, CA }, stop.

3 Analysis of the ratio of MH2′

First, we sum up the definitions and notations which
will be used in the following part of the paper.

P= the total processing time of all jobs.

T= the transportation time for each delivery.

b∗
L= the number of batches if the jobs are assigned

to batches by an optimal algorithm of the bin-packing
problem.
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P ∗= the optimal value of the knapsack problem con-
structed in Step 1 of Procedure A .

v1= the departure time of jobs in the second batch in
the given optimal schedule.

v2= the total processing time of jobs in the third batch
in the given optimal schedule.

Bj = the jth bin in the solution obtained by FFD in
the algorithm H2, j = 1, . . . , bH2.

|Bj | =the number of items contained in bin Bj .

Ejl = the lth item in Bj , j = 1, . . . , 4, l = 1, . . . , |Bj |.

For our algorithm and procedures, we introduce the
following notations. Show in table 1.

Before proceeding, we first introduce several lemmas
on the procedures and our algorithm MH2′.

Lemma 3.1 If b∗ 6 3,
k∑

i=1

si ≤ 7z
3 (k ≤ n), then the k

items can be assigned to three bins by algorithm FFD.

Proof : Suppose that there are at least four bins to
pack the k items by FFD algorithm of Bin-packing
problem. Let S′

j (j = 1, 2, 3) be the jth bin’s total
items size when E41 is packed to the fourth bin, then
S′

1+E41 > z, S′
2+E41 > z, S′

3+E41 > z, S′
1+S′

2+S′
3+

E41 ≤ 7z
3 . We have E41 > 1

3z, and there are at most
two items in each of the first three bins. Thus there
are at least four bins to optimally pack the kitems,
contradicting to b∗ = 3.

Corollary 3.1 For N1 ⊂ N, S −SN1 ≤ 7z
3 and N\N1

can be packed into b − 1 bins, we have

(1) If b = 4, then b∗ ≤ 3;

(2) If b > 4, then b∗ > 3.

Lemma 3.2 For an instance I of the bin-packing
problem, let OPT (I), FFD(I), FF (I) be the number
of used bins in an optimal solution, the solutions yield-
ed by FFD and FF , respectively, we have

(1)FF (I) ≤ 7
4OPT (I);[6]

(2)FFD(I) ≤ 11
9 OPT (I) + 7

9 .[7]

Lemma 3.3 For bH2 ̸= 3 or 4 and CH2 ̸= C(H2)+T ,
if CH2 = P1 + bH2T or CH2 = P2 + (bH2 − 1)T , then
CH2

C∗ ≤ 14
9 .

Proof : Recall that bH2 ≤ 3
2b∗

L ≤ 3
2b∗ and bH2 ≤

11
9 b∗

L + 7
9 ≤ 11

9 b∗ + 7
9 .

If bH2 = 1, then CH2 = C(H2) + T , contradicting the
assumption CH2 ̸= C(H2) + T .

If bH2 = 2, b∗ ≥ 2, we only consider the case that
CH2 = P1 + bH2T due to CH2 = P2 + (bH2 − 1)T =

C(H2) + T . We have CH2

C∗ ≤ 3
2 ≤ 14

9 from Remark 2.3.

If bH2 = 5 or 6 or 7, we have b∗ ≥ bH2 − 1. We also

have CH2

C∗ ≤ 14
9 from Remark 2.3.

If bH2 = 8 or 9, we have b∗ ≥ bH2 − 2, We also have
CH2

C∗ ≤ 14
9 from Remark 2.3.

If bH2 ≥ 10, P1+bH2T
C∗ < 2

bH2 + 11
9

bH2− 2

bH2

bH2−1
and

P2+(bH2−1)T
C∗ < 2

bH2−1
+ 11

9

bH2−1− 2

bH2−1

bH2−1
.

Define f(P1) = 2
P1

+ 11
9

P1− 2
P1

P1−1 = 1
9 ( 40

P1
− 11

P1−1 + 11).

Then f ′(P1) = 1
9 (− 40

P 2
1

+ 11
(P1−1)2 ). It can be easily

verified that f(10) = 1.53 < 14
9 , f ′(P1) < 0 for P1 ≥

10. Thus P1+bH2T
C∗ < 14

9 and P2+(bH2−1)T
C∗ < 14

9 .

Lemma 3.4 If CH2 = P − C(H2) + 2T (bH2 ≥ 3),

then CH2

C∗ ≤ 14
9 .

Proof : If bH2 = 3, then b∗ ≥ 2. By Remark 2.3, we

have CH2

C∗ < 3
2 < 14

9 .

If bH2 ≥ 4, from P − C(H2) + 2T ≥ P1 + 4T ≥ 4T , we
have P ≥ 2T .

As C(H2) ≥ P
2 and C(∗) ≥ P

2 , we get

CH2

C∗ ≤ P−C(H2)+2T
C(∗)+T ≤ P− P

2 +2T
P
2 +T

= 1 + T
P
2 +T

≤ 3
2 < 14

9 .

Lemma 3.5 If CH2 = C(H2) + T , C(H2) ≤ 3
4P or

pim
≥ 2

3P , then CH2

C∗ ≤ 3
2 .

Proof : Note that CH2

C∗ ≤ C(H2)+T
C(∗)+T .

If C(H2) ≤ 3
4P , then

CH2

C∗ ≤ C(H2)+T
C(∗)+T ≤

3
4 P+T
P
2 +T

= 3
2 − T/2

P
2 +T

≤ 3
2 .

If pim ≥ 2
3P , then C(H2) ≥ 2

3P , therefore

CH2

C∗ ≤ C(H2)+T
C(∗)+T ≤ P+T

2
3 P+T

= 1 +
1
3 P

2
3 P+T

≤ 1 +
1
3 P
2
3 P

= 3
2 .

Lemma 3.6 (1) If σB is re-constructed by Procedure
B, then C(B) ≤ 3

4P ;

(2) If σB is re-constructed in Step 1 of Procedure B,
then CB ∈ {P1 + bH2T, P2 + (bH2 − 1)T, C(B) + T};
(3) If σB is re-constructed in Step 2 of Procedure B,
then CB ∈ {P1 + bH2T, C(B) + T, P − PbH2 + 2T}.
Proof : (1) Note that σB is re-constructed by Proce-
dure B only when C(H2) > 3

4P and pim < 2
3P .

If 0 < pim < 1
2P , then

Bs = {Jil
Jil+1

· · · Jim} and P
4 ≤

m∑
j=l

pij ≤ P
2 , so

C(B) = max{C(H2) −
m∑

j=l

pij , P − C(H2) +
m∑

j=l

pij } ≤ 3P
4

.

If 1
2P < pim < 2

3P , then

Bs = {Jim}, and C(B) = max{pim , P − pim} = pim ≤ 3P
4

.

(2) If bH2 = 1, we have CB = C(B) + T .

If bH2 = 2, we consider the time when the vehicle fin-
ishes delivering B1 and returns to the machines. If it
is bigger than C(B), then CB = P1 + 2T . Otherwise,
CB = C(B) + T .

If bH2 ≥ 3, we first suppose that C(H2) is determined
by M1. Consider the time when the vehicle finishes
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Table 1: Notations of algorithm MH2′.
Algorithm (Procedure) H2 A B Optimal schedule

Schedule σH2 σA σB −
The number of batches bH2 bA bH2 b∗

The objective function value CH2 CA CB C∗

The makespan C(H2) C(A ) C(B) C(∗)
The departuretime of jobs in the first batch P1 PA

1 − u
The total processing time of jobs in the second batch P2 PA

2 − v

delivering the second last batch BbH2−1 and returns to
the machines, which is denoted by F . Note that F must
be one of the following four values, P1 + (bH2 − 1)T ,
P −C(H2)+T , P2+(bH2−2)T , or C(H2)−PbH2 +2T .

If F = P1 + (bH2 − 1)T , it is obvious that CB = P1 +
bH2T or CB = C(B) + T . For the remaining cases,
we will prove that F < P

2 ≤ C(B), and thus CB =
C(B) + T .

If F = P − C(H2) + T , then BbH2−1 is delivered
immediately after being processed. From remark 2.3
and C(H2) > 3P

4 , it follows that 2T ≤ PbH2−1 <

P −C(H2) < P
4 and F = P −C(H2)+T < P

4 + P
8 < P

2 .

If F = P2 + (bH2 − 2)T , then the second batch is
delivered immediately after being processed. Hence,
P2 ≥ P1 + T > T. Combining that C(H2) > 3P

4 and
P1 ≤ P2 ≤ · · · ≤ PbH2 , we have

P2 ≤ P−C(H2)
bH2−1

2

<
P
4

bH2−1
2

= P
2(bH2−1)

and F = P2 +

(bH2 − 2)T < P2 + (bH2 − 2)P2 = (bH2 − 1)P2 < P
2 .

If F = C(H2) − PbH2 + 2T , then BbH2−2 is delivered
immediately after being processed. From remark 2.3
and C(H2) > 3P

4 , it follows that

2T ≤ PbH2−2 ≤ PbH2−1 < P − C(H2) < P
4 and F =

C(H2) − PbH2 + 2T < P
4 + P

4 = P
2 .

If C(H2) is determined by M2, the result can be proved
similarly.

(3) If σB is re-constructed in Step 2 of Procedure
B, it is easy to show that F = P1 + (bH2 − 1)T or
F = P − PbH2 + T . Hence

CB ∈ {P1 + bH2T, C(B) + T, P − PbH2 + 2T}.

Lemma 3.7 If CH2 = C(H2) + T , then CB

C∗ ≤ 3
2 .

Proof : If σB is identical to σH2,then C(H2) ≤ 3
4P or

pim ≥ 2
3P , so we have CB

C∗ ≤ 3
2 by Lemma 3.5.

When σB is re-constructed in Step 1 of Procedure
B, then from Lemma 3.6 we have

CB ∈ {P1 + bH2T, P2 + (bH2 − 1)T, C(B) + T}.

If CB = C(B) + T , then similarly as in Lemma 3.5

implies that CB

C∗ ≤ 3
2 due to C(B) ≤ 3P

4 .

If CB = P2 + (bH2 − 1)T , then from remark 2.3, we

have CB

C∗ ≤ 3
2 .

If CB = P1 + bH2T , when bH2 ̸= 3, 4 and bH2 ≥ 2,

we have already proved that CB

C∗ ≤ 3
2 in Lemma 3.3.

Next we show that CB

C∗ ≤ 3
2 for CB = P1 + bH2T and

bH2 = 3 or 4.

If CB = P1 + 3T , then CB

C∗ ≤ P1+3T
P
2 +T

. From CH2 =

C(H2) + T , we have P3 ≥ 2T form remark 2.1. Com-

bining P − 2P1 ≥ P3 ≥ 2T , we get CB

C∗ ≤ P1+3T
P
2 +T

< 3
2 .

If CB = P1+4T . Note that there are two batches with
the total load P − C(H2) < P

4 on M1, thus P1 < P
8 ,

and then CB

C∗ ≤
1
4 ( P

2 +T )
P
2 +T

+
15
4 T

u+3T < 3
2 .

When σB is re-constructed in Step 2 of Procedure
B, then from Lemma 3.6 we have

CB ∈ {P1 + bH2T, C(B) + T, P − PbH2 + 2T}.

If CB ∈ {P1 + bH2T,C(B) + T}, we have proved that
CB

C∗ < 3
2 in the front half part of the theorem. Next,

we assume that CB = P − PbH2 + 2T (bH2 ≥ 3).

As PbH2 ≥ C(B), we have

P − C(B) + T ≥ P − PbH2 + T > P1 + (bH2 − 1)T ,
and P − C(B) > P1 + (bH2 − 2)T .

Combining thatP
2 ≥ P − C(B), we get P

2 > T . Thus

CB

C∗ ≤ P−C(B)+2T
P
2 +T

≤
P
2 +2T
P
2 +T

= 1 + T
P
2 +T

< 3
2 .

Lemma 3.8 If b∗ = 2 and bA = 3, then PA
1 ≤ εP

2 +
(1 − ε)u.

Proof : From the property of FPTAS of the knapsack
problem, we know that PA

3 ≥ (1−ε)P ∗ ≥ (1−ε)v. As
P ≤ 2u + v, we have v ≥ P − 2u.

Complying with P1
A ≤ P2

A ≤ PA
3 , we get

PA
1 ≤ P−P3

A

2 ≤ P−(1−ε)(P−2u)
2 = εP

2 + (1 − ε)u.

Lemma 3.9 If b∗ = 2 and CA ̸= C(A ) + T , then
CA

C∗ < 14
9 + ε.

Proof : From Lemma 3.2 (1) , we have bA ≤ 3.

If bA = 2, we get CA = PA
1 + 2T = P − C(A ) + 2T .

From Lemma 3.3, we obtain that CA

C∗ < 3
2 .

If bA = 3, since CA ̸= C(A ) + T , then

CA = PA
1 + 3T or P − C(A ) + 2T = PA

2 + 2T .
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For the case that P −C(A )+2T = PA
2 +2T , it is easy

to get that CA

C∗ < 3
2 from remark 2.3. The following

part, we will prove that CA

C∗ =
P A

1 +3T
C∗ < 3

2 + ε when
CA = PA

1 + 3T . From Lemma 3.8, we know that
PA

1 ≤ εP
2 +(1− ε)u. As C∗ ≥ max{C(∗)+T, u+2T},

we consider the following two cases.

Case 1. If u + 2T > C(∗) + T . Then

u + T > C(∗) ≥ P
2 , thus P

2 − u ≤ T . Hence

CA

C∗ ≤ P A
1 +3T
u+2T ≤

εP
2 −εu+u+3T

u+2T ≤ 1 +
ε( P

2 −u)+T

u+2T

= 1 + εT+T
u+2T ≤ 3

2 + ε.

Case 2. If u + 2T < C(∗) + T . Then

u + T < C(∗) < P , thus u < C(∗) − T .Hence

CA

C∗ ≤ PA
1 + 3T

C(∗) + T
≤

εP
2 + (1 − ε)u + 3T

C(∗) + T

<
εC(∗) + (1 − ε)[C(∗) − T ] + 3T

C(∗) + T

=
C(∗) + 2T + εT

C(∗) + T

= 1 +
T + εT

C(∗) + T

≤ 3

2
+ ε.

Lemma 3.10 If CH2 = P1 + 3T , then CMH2′

C∗ < 3
2 .

Proof : If CH2 = P1 + 3T , then b∗ = 2 or b∗ = 3 by
Lemma 3.2 (2).

If b∗ = 2, we have CMH2′

C∗ < 3
2 + ε from Lemma 3.9.

Ifb∗ = 3, we also have CMH2′

C∗ < 3
2 from remark 2.3.

Lemma 3.11 If CH2 = P1+4T , then CMH2′

C∗ < 14
9 +ε.

Proof : By Lemma 3.2 (2), we have b∗ = 3 or b∗ = 4.

If b∗ = 4, it is easy to get CMH2′

C∗ < 3
2 + ε < 14

9 + ε from
remark 2.3. If b∗ = 3, we consider the following two
cases.

Case 1. P1 ≤ 1
2T or T ≤ P

5 .

As C∗ ≥ max{C(∗) + T, u + 3T}, thus

CH2

C∗ ≤ P1+4T
u+3T < 3

2 or CH2

C∗ ≤ P1+4T
C(M)∗+T ≤

1
4 P+4T

P
2 +T

< 3
2 .

Case 2. P1 > 1
2T and T > P

5 .

If SN1 ≥ 2z
3 , note that b∗ = 3, we have S − SN1 ≤ 7z

3 .
Thus bA ≤ 4 from Lemma 3.1.

If z
2 < SN1 < 2z

3 , then there are at most 6 items in
N\N1 and each item size is larger than z

3 , therefore the
items in N\N1 can be assigned three bins by algorithm
FFD (if not b∗ ̸= 3 ), therefore bA ≤ 4.

If SN1
≤ z

2 , then there are at most 3 items in N\N1

and each item size is larger than z
2 , therefore bA ≤ 4.

If b∗ = 3, bA = 3, it is easy to obtain CMH2′

C∗ < 3
2 from

remark 2.3. Next, we only need to consider the case of
b∗ = 3 and bA = 4.

If CA = PA
2 + 3T , then CMH2′

C∗ < 3
2 from remark 2.3.

If CA = C(A )+T , then CMH2′

C∗ < 3
2 from Lemma 3.7.

If CA C = P − C(A ) + 2T , then CMH2′

C∗ < 3
2 from

Lemma 3.4.

If CA = PA
1 + 4T . Noting that P ≤ 2v1 + v2, we have

v2 ≥ P − 2v1. As

PA
4 ≥ (1 − ε)P ∗ ≥ (1 − ε)v2 = (1 − ε)(P − 2v1), and

PA
1 ≤ P−P A

4

3 ≤ P−(1−ε)(P−2v1)
3 = εP+2v1(1−ε)

3 . Thus

CMH2′

C∗ =
P1

A + 4T

C∗

≤
εP+2v1(1−ε)

3 + 4T

C∗

=
1−ε
3 (2v1 + 4T ) + 2ε

3 (P
2 + T ) + ( 8

3 + 2
3ε)T

C∗

≤
1−ε
3 (2v1 + 4T )

v1 + 2T
+

2ε
3 (P

2 + T )
P
2 + T

+
8+2ε

3 T

3T

=
2(1 − ε)

3
+

2ε

3
+ (

8 + 2ε

9
)

=
14

9
+

2ε

9

=
14

9
+ ε (when ε → 0).

As a direct conclusion of the above Lemmas 3.3, 3.4,
3.7, 3.10 and 3.11, we obtain the following main result.

Theorem 3.1 CMH2′
C∗ ≤ 14

9 +ε, where CMH2′ is the ob-
jective function value obtained from algorithm MH2′.

4 Conclusions

In this paper, we present an algorithm with the worst-
case performance ratio of 14

9 + ε, which improves the
upper bound of 5

3 obtained by a algorithm gained by
Zhong et.al.[5]. In order to get the ratio of 14

9 + ε,
two new procedures of the improved algorithm used
to handle difficult cases such as bH2 = 3 and bH2 = 4.
Obtaining the best possible algorithm or improving the
lower bound is an interesting an challenging task.
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