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Abstract In this paper, we study the problem of constructing a regulatory network of yeast in
oxidative stress process. Discrete Dynamic System (DDS) model has been introduced in describing
Gene Regulatory Networks (GRNs). However, delay effect was not taken into consideration within
the model. A Time-delay DDS model composed of linear difference equations is developed to
represent temporal interactions among significantly expressed genes. Interpolation and re-sampling
are imposed to equalize the non-uniformity of sampling time points. Statistical significance plays
an active role in obtaining the optimal interaction matrix of GRNs. The constructed gene network
using linear multiple regression has a very good match with the original data. Simulation results
are given to demonstrate the effectiveness of our proposed model.
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1 Introduction
The study of GRNs has drawn much attention in the recent years since it can help

understand the function of genes. Even though it’s a scientific challenge to understand the
regulations of large groups of genes, insights have been gained from various mathematical
formulations describing the dynamics of GRNs.

Compared with available knowledge, past models about the behavior of molecular
and cellular systems seemed to be incomplete in that key numbers are unknown [3]. Nu-
merous studies probably have relied on simulation, see for instance [8, 12]. Although
thoughtful, these simulated networks appeared to be so insignificant that biologists per-
ceived to guarantee following experimental endeavor. With the development of experi-
mental techniques, rapid measurement of expression levels of genes became possible. A
large amount of available gene expression data make formal mathematical methods more
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and more popular when modeling the gene regulation processes. There have been a con-
siderable number of models describing GRNs in the literature. Directed graphs could
be viewed as the most straightforward way to model a GRN. Bower and Bolouri intro-
duced some classic models of genetic networks [6]. A Bayesian network [5] depicts the
gene regulatory process from a probability perspective. The dynamic Bayesian network,
an extension of Bayesian networks can describe statistical temporal dependencies among
genes. However, it does not explicitly describe temporal relations among genes in a func-
tional form. In Boolean networks and probabilistic Boolean networks [13], each variable
takes the value of either 0 or 1. This nature significantly limits its capacity to discrimi-
nate quantitative differences. The generalized logical method developed by Thomas and
his collegues [11] can incorporate more than two levels for each variable. It is based on
the Boolean networks and has undergone several extensions. Thanks to its pinpoint ac-
curacy in describing gene expression level, modeling GRNs in a continuous version has
become widespread. Ordinary Differential Equations (ODEs) [9] model a specific gene
within the network by a differential equation formulating the rate of expression level.
In particular, piecewise linear differential equations and qualitative differential equations
have beneficial mathematical characteristics and thereby are capable of qualitative anal-
ysis. There appears to be a strong probability that their limited up scalability is a major
difficulty in simulation. An ODE-based model offers a continuous description of the regu-
lation process. However, the processes might be considered as being discrete. Taking this
into account, together with the necessity for solving ODEs using computing technology,
we are inspired to develop a discrete model for transcriptional regulation. Discrete Dy-
namical System (DDS) Model [10], a discrete version of ODEs, assists one understanding
interactions among variables systematically. It has gained a solid foot in quantitative mod-
eling of GRNs. The initial application of DDS model in mathematical biology is Verhulst
equation, a single variable DDS model used for population dynamics. Using the least
squares method for estimating system coefficients, the linear DDS model of mRNA ex-
pression levels proves to be biologically plausible. Based on the relatively coarse model,
Song et al. [10] proposed a modified DDS model which avoids some problems in the
previous one. It imposes log-time interpolation to equalize the non-uniformity in original
time domain and assesses the statistical significance of equations for specific genes. The
third innovation it makes is to use eigenvalue normalization to perform power stability
to the whole system. Concisely speaking, a DDS model can be described as a series of
difference equations:

g[t]−g[t−1]
h

= Ag[t−1]+Be[t−1]+ ε[t] (1)

where g[t] = (g1[t],g2[t], ...gN [t]) is a vector of expression levels at time t, N is the number
of genes invloved. The entries of A, Ai j is the influence of gene j on gene i. The entries of
B, Bik is the influence of the kth stimulus on gene i. The term ε[t] represents noise levels
at time t. The classic estimation method is to utilize least squares.

A statistically significant DDS model which consists of linear difference equations can
be utilized to infer transcriptional regulations. It also accelerates the characterization of
gene interactions. The estimation of parameters is easy to implement and the constructed
model itself reveals some biological meaning. Although considerable research has been
devoted to model GRNs, this needs enlarging to a broader sense such as modeling the
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genetic network via a discrete dynamic system model with time-delay in that the rate of
expression levels at time t does not only depend on expression levels on t, but also it is
influenced by time t−1. If non time-delay model can reveal some biological sense, then
the model taking into account the delay effect probably can provide more sound biological
meaning.

The remainder of the paper is structured as follows. Section 2 presents the proposed
Delay DDS model. In Section 3, we utilize the model to construct GRNs of the yeast.
Results and Discussion are presented in Section 4. Finally, conclusions and potential
future work are given in the last Section.

2 DDS Model with Delay Effect
The model developed by Song et al. [10] can be deemed as a power-stable significant

DDS model. However, simulation of the model shows that the results without stabilization
turned out to be more reasonable during initial period before nonlinear effect takes place.
The result seemed to be distorted by the procedure of being stabilized. One interpretation
might be due to the small number of points needing to be predicted. On the other hand, the
major aim of stabilization is to ensure the stability of the system as time goes to infinity,
but the DDS model proposed here indeed is to predict the expression levels of the network
before perturbation takes place, namely two hours in total. It possibly poses no need to
stabilize the system. In the stabilisation of the DDS model, W was replaced by Ws defined
as 1

ρ(W )W if ρ(W )> 1, where W = hA+ I,W =V ∧V−1, ρ(W ) = max{|λ | : λ ∈ λ (W )}.
A was stablized as As: 1

h [
hA+I

ρ(hA+I) − I] if ρ(W ) > 1. The final form of the model was
retrieved as:

g[t]−g[t−1]
h

=

{ { 1
h [

hA+I
ρ(hA+I) − I]g[t−1]+Be[t−1]}+ ε[t] if ρ(W )> 1

{Ag[t−1]+Be[t−1]}+ ε[t] otherwise
(2)

Therefore, if ρ(W ) > 1, we have g[t] = hA+I
max{|λ |:λ∈λ (hA+I)}g[t−1]+hBe[t−1]+hε[t]. It

does make sense in the long run as time goes by, but such procedures may probably be
redundant in the initial phase with only few values to be predicted.

Nevertheless, in the model developed above, the change rate of the expression level
merely relying on the current expression levels of the system tended to be biased. A
considerable number of examples have shown that information transmission even near the
speed of light may not be fast enough to ignore the effects of delays. There is a possibility
that the delays might cause a completely different type of behavior that is absent in model
without delay.[4]

Delays in various processes such as transcription, transportation and translation result
in time delay in gene regulation processes. Bliss et al. [1] were some of the first to explic-
itly consider transcriptional and translational delays in their modeling of the tryptophan
operon. A mixed integer linear programming framework [2] for inferring time delay in
GRNs was described on account of the effect of time-delay. This key attribute of the
regulatory structure is essential to ensure that the proposed inference model accurately
captures the dynamics of the system.Time delays have been considerably used in biology,
population dynamics for instance. They are ubiquitous in the biological sciences but are
not always well-represented. In mathematical models, it may be more practicable to add
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the time-delay parameter. This seems to be more authentic and therefore may be more
biologically plausible. Taking time-delay effect into consideration, one may extend this
existing DDS model to a modified one. The Delay-DDS model can be written as

g[t] = g[t−1]+hAg[t−2]+hBe[t−1]+hε[t] (3)

and t, t − 1, t − 2 represent discrete time points, h represents time interval between two
consecutive time points. The matrices A and B are to be estimated. This model describes
an situation when the change rate of expression level of genes at time t not only relies
on time t but also depends on t − 1. Here we do not model multiple time-delay effect
partly due to the confinement of sampling points in that even though interpolation is in-
troduced, it has drawbacks in cementing measurement errors and inducing arbitrariness.
[7]. Our aim is to use the minimum interpolation points required. Usually there are a
lot more genes than time points in standard gene expression profiling. This makes the
unique determination of gene interaction matrix of linear models impossible to realize.
We are therefore encouraged to find the optimal one among those interaction matrices.
The procedures will be discussed in details in the following sections.

3 Constructing GRNs of Yeast Using Delay DDS Model
We apply the Delay DDS model to the time-course microarray measurements of rel-

ative expression levels among genes in yeast(Saccharomyces cerevisiae) during early
exposure to 150mM cumene hydroperoxide treatment. The data was normalized using
(Robust Multichip Average)RMA algorithm implemented in a R package named Affy
from the Bioconductor website (http://www.bioconductor.org) and listed are the genes
that show significant changes comparing to mock-treated controls. Data can be accessed
at (http://hkumath.hku.hk/ wkc/papers/all-de-yeast1.xls)

3.1 Data Preprocessing
The data is obtained from [14]. They were used as the log-transformed expression

data to correct system bias. Due to the large amount of gene data, lots of genes may
share similarities in performance which indicate their related expression patterns. They
can then be treated as a single gene with one as a representative. This can largely reduce
the computational cost while obtaining the major features of the network as well. Various
algorithms exist for clustering in the literature such as “Hierarchical Clustering”, “Parti-
tional Clustering” and “Spectral Clustering”. Here we employ the “k-means clustering”
which is a kind of “Partitional Clustering” methods for its simplicity and fast speed in
processing large datasets.

3.2 Interpolation
Since there are only 5 data points and they are sampled at 0min, 15min, 30min,

60min, 120min, it would result in data over-fitting when implementing delay-DDS model
merely by this information. To overcome the deficit, data interpolation is used. Here we
adopt cubic-spline interpolation at time 45min,75min,90min,105min in order to ensure
the equality of time distance.
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3.3 Multiple Linear Regression with Statistical Significance
With the complementary interpolated data, linear multiple regression is enforced to

reconstruct the GRNs. Sparseness in GRN allows for the small number of non-zero pa-
rameters in each equation for every specific gene. In this Delay-DDS model, two is the
maximum number of non-zero parameters in the influencing number of genes. For each
difference equation, p-value in the F-test is utilized to measure the statistical significance.
The overall p-value of the model can be expressed as: p−value = 1−∏N

i=1(1− pi), pi is
the significance value of the F-test during fitting of a linear model for gene i. Considering
the maximum number of influence genes 2, there are C2

N possibilities of traversal, where
pi is chosen as the minimum of those pis among the C2

N possibilities.

4 Results and Discussions
In the following, we will present some results illustrating the effectiveness of our

Delay-DDS model. There are 4 models for comparison in total.
Model 1: Discrete Dynamic System Model.

The model is of the form in Equation1. The parameters of the model have been explained
previously in section 1. In the process of parameter estimation, data is used in the log-
form to save system bias. Log-time transformation is introduced to equalize the non-
uninformity of time distances. The logarithm transform on time is defined by t ′ = log(t +
t0), where t ′ is the time variable in the log-time domain. Selection of the constant t0 is
determined by the extent of equalization between the consecutive pair of time points after
the log-time transform. Linear-multiple regression is performed to construct the model.

Model 2: Piecewise DDS Model.
The model is an improvement of Model 1. As in the log-time transformation process,
the information at 0min seems to be lost. This may pose some unnecessary error when
predicting the value at other time points. This piecewise model is an extension of Model
1 in that it first use Model 1 to predict the value at 15min,30min,60min,120min. Then
it proceeds to use the predicted value of 15min,30min,45min,60min, together with the
original value at 0min. With the 5 values, Model 1 is implemented again to predict the
values at 15min,30min in the context of no log-time transformation. Because here time
distance is equal,there is no need to use log-time transform.

Model 3: Nondelay DDS Model.
The model unlike the previous two doesn’t use log-time transformation,instead, it uses
cubic interpolation to equalize the non-uniformity of time sampling. The form of Non-
delay DDS Model is the same as Model 1. Cubic interpolation is utilized at time 45min,
75min, 90min, 105min. In this situation will there be 9 data points in total. With the 9
values, Nondelay DDS model can be performed to predict the model parameters using
linear multiple regression.

Model 4: Delay DDS Model.
This model is slightly different from Nondelay DDS Model which has been forumlated in
Equation 3. This model takes account of the effect in previous discrete time points. But
the procedure of parameter estimation is the same as Model 3.

Since for “k-means clustering”, different centroids were chosen initially which may
lead to different kinds of clustering results. Hence, we perform more than 10 times of
the clustering program to get a relatively significant clustering result. In the dataset, we
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have 4118 genes in total. Thanks to the expression similarities in genes, we allow the
maximum of clustering number to be 200. Clustering result will be adopted when each
cluster has more than 20 members. Finally the most frequent clustering number 43 was
selected when running the clustering program and simultaneously the one that located at
the center of the cluster was picked out as representative. With the existing 43 groups, 4
different models were imposed on them to predict the values at the sampled time points.
For the noise ε[t], we all model it Gaussian. The results were illustrated in the following
figures. We can have a clear understanding on the superiority of the delay-DDS model
from the simulation results.

Figure 1 displays the prediction performance in cluster 1 in two models: DDS model
without normalization and DDS model with normalization. Here, normalization means
the stabilization procedure as described in Section 2. DDS model without normalization
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Figure 1: Comparison of DDS Model without stablization with DDS Model

is the DDS model without stabilization. Data(y-axis) is measured as log-transformed fold
change in expression measurement relative to the untreated control. ’1-2–NonNormalized’
depicts the prediction performance of DDS model without stabilization, the prediction
error of the model was described by ’2-2–NonNormalized’; ’1-3–Normalized’ depicts
the prediction performance of DDS model stabilized, with ’2-3–Normalized’ shows the
prediction error of the stabilized DDS model. From the figure we can know that Non-
Normalized model predicts the value with error of 1e−2, while Normalized model tends
to distort original values and yield huge errors. It clearly explains that model without nor-
malization is much better than the one normalized. Normalization is to predict the long
time behavior while here we only need to predict few data points in the initial phase. This
motivates us to develop the model without normalization.

Figure 2 is the comparison result of four different models in predicting performance
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of cluster 1. Data(y-axis) is measured as log-transformed fold change in expression mea-

0 15 30 60 120 min
7.4

7.42

7.44

7.46

7.48

7.5

7.52

7.54

Original Value
0 15 30 60 120 min

7.25

7.3

7.35

7.4

7.45

7.5

7.55

Model 3

 

 
original value
predicted value

0 15 30 60 120 min
7.4

7.42

7.44

7.46

7.48

7.5

7.52

7.54

7.56

Model 4

 

 
original value
predicted value

0 15 30 60 120 min
7.4

7.42

7.44

7.46

7.48

7.5

7.52

7.54

Model 1

 

 
original value
predicted value

0 15 30 60 120 min
7.4

7.42

7.44

7.46

7.48

7.5

7.52

7.54

Model 2

 

 
original value
predicted value

0 15 30 60 120 min
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Model 3

P
re

di
ct

io
n 

E
rr

or

0 15 30 60 120 min
−6

−4

−2

0

2

4
x 10

−4

Model 4

P
re

di
ct

io
n 

E
rr

or

0 15 30 60 120 min
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Model 1

P
re

di
ct

io
n 

E
rr

or

0 15 30 60 120 min
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

−3

Model 2

P
re

di
ct

io
n 

E
rr

or

Figure 2: Comparison of 4 models

surement relative to the untreated control. From Figure 1, conclusions can be made that
models without normalization exhibit superiority and we will then focus on them. There-
fore, the four models are all non-normalized. The first row is the prediction result, with
the second row the error of prediction results versus the original values. Model 1,2,3 and
4 exactly correspond to the 4 models described in Section 4. The first figure in row 1 is
the original value, with the second to fifth figure showing the prediction performance of
Model 1 to Model 4 respectively; the figures in row 2 illustrate the corresponding pre-
diction errors of the 4 models. Delay DDS model(Model 4) exhibits superiority among
the four models. It predicts the value with minimal error at about 1e− 4, while piece-
wise model(Model 2) ranks 2 at predicting with error at about 1e−3, which shows better
performance than original DDS model(Model 1). This is consistent with the fact that
piecewise model is an improvement of original DDS model. Even though interpolation is
used in Nondelay DDS model(Model 3), the prediction result is not satisfactory, the error
of which is always maximum among the four, which shows inferiority to original DDS
model. This also explains the positive effect of log-time transformation takes in model
construction. In a word, the performance of the four models encourages us to take into
account of the effect of time-delay in modeling.

5 Concluding Remarks
This paper mainly deals with the statistical properties of the data set while the bio-

logical meaning from this model is not discussed. Therefore some of the procedures in
dealing with the data may lack biological stringency. For instance, we just use “k-means”
in clustering the data while this method just cluster the data in a mathematical way without
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considering any prior biological information.
The model is easy to implement and matches the data well. Considering the per-

formance of Delay DDS model versus DDS model without delay effect, the model with
delay significantly outperforms. This might imply time lag does exist in oxidatative stress
process of yeast. From the good performance of the delay-DDS model we may use it
to extract some biological information hidden inside. It may also aid in intuitive under-
standing of the mechanisms which would give suggestions to biologists on discovering
unannotated functions of genes in GRNs. These would be our future research extensions.
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